
TRANSACTIONS ON GAMES 1

Genetic-WFC: Extending Wave Function Collapse
with Genetic Search

Raphael Bailly, Guillaume Levieux

Abstract—This paper presents Genetic-WFC, a procedural
level generation algorithm that mixes genetic optimization with
Wave Function Collapse, a local adjacency constraints prop-
agation algorithm. We use a synthetic player to evaluate the
novelty, safety and complexity of the generated levels. Novelty is
maximized when the synthetic player goes on tiles not visited for
a long time, safety is related to how far it can see, and complexity
evaluates the variability of the surrounding tiles. WFC extracts
constraints from example levels, and allows us to perform the
genetic search on levels with few local asset placement errors,
while using as little level design rules as possible. We show that
we are able to rely on WFC while optimizing the results, first
by influencing WFC asset selection and then by re-encoding
the chosen modules back to our genotype, in order to optimize
crossover. We compare the fitness curves and best maps of our
method with other approaches. We then visually explore the kind
of levels we are able to generate by sampling different values of
safety and complexity, giving a glimpse of the variability that
our approach is able to reach.

Index Terms—Procedural Content Generation, Level Design,
Player Experience, Variability, Wave Function Collapse, Genetic
Algorithm, Video Games

I. INTRODUCTION

GAME levels procedural generation can be approached
with constructive as well as generated-and-test algo-

rithms [1]. Constructive algorithms mainly rely on design
knowledge to create levels in one go, without the need to
further evaluate and refine them. Generate-and-test approaches
mainly focus on optimization algorithms that search the game-
level space, iteratively creating levels to maximize a specific
fitness function. The goal of this paper is to propose a level
generation pipeline that mixes a search-based algorithm with
a generic constructive one, and show how these two methods
benefit from each other. More specifically, we show that a
generic, data-based constructive algorithm can help a search-
based algorithm to deal with a constrained optimization prob-
lem without fitness penalization. The constructive algorithm
takes care of the constraints, while the search-based algorithm
can focus on improving the simulated game experience.

Constructive and generate-and-test approaches are comple-
mentary. The design knowledge on which constructive meth-
ods rely can allow to quickly build levels of high quality.
However, if a game level can be simulated and evaluated, one
may further refine the levels to make them even better, tune the

Raphael Bailly and Guillaume Levieux were with the CEDRIC lab,
Conservatoire National des Arts et Métiers (CNAM), Paris, France e-mail:
(guillaume.levieux@cnam.fr).

This work was funded with the help of Nouvelle-Aquitaine, for the Kiwi
Project, under grant agreement No 18001957, and with the help of BPI with
the United VR project.

game experience they provide, or allow for more flexibility and
randomness as bad levels should be detected and discarded.
Search-based methods explore a wide generation space, as
they are only limited by the fitness score they obtain when
modifying the levels. However, searching the levels space can
be a time-consuming process, as many bad or unfeasible levels
will be generated and tested. We thus propose to use a generic,
data-driven constructive method known as Wave Function
Collapse (WFC), that encodes basic knowledge about the
layout of the level, to boost a genetic optimization algorithm
(GA). Indeed, using WFC as a repair operator, the GA will
only manipulate levels exempt of basic asset placement errors
and concentrate on improving the simulated game experience.

Wave Function Collapse seems particularly adapted to cor-
rect the errors of a search-based level generator. WFC has
shown its capacity to generate infinite virtual cities [2], and
has been used in commercial games and tools [3], [4]. This
algorithm extracts adjacency constraints from example levels,
and then applies them to generate new levels of arbitrary size.
This algorithm is not limited to a specific game genre, as it
can be applied to any grid-based procedural level generator
that needs to enforce adjacency constraints.

To better evaluate this Genetic-WFC algorithm, we focus on
generating semi-opened levels, that do not constrain the player
along a unique, restricted path, but allow them to move more
freely in their environment. In our experiment, the player has
a specific location to reach in the level. The level contains
blocking geometry, both for player vision and navigation, and
enemies navigate the level to attack the player and prevent
them from reaching their goal too easily. For instance, Ghost
Recon or Far Cry enemy camps typically offer this kind of
experience for the shooter genre, but so does an Elden Ring’s
dungeon, to only name a few [5]–[7].

Such games provide complex environments as well as
an emergent gameplay. They are thus hard to generate for
both constructive and generate-and-test approaches, and will
provide an interesting test bed for our algorithm. For instance,
when building an enemy camp, stairs can’t be placed in the
middle of the road, and must lead to a valid position. Fences
should be around the camp and not inside, and vehicles can’t
be parked anywhere. These rules constrain the relative place-
ment of assets, and they might be used to design a constructive
algorithm that could generate a valid camp. However, assets
placement will also block the path and visibility of both the
player and their enemies as they freely roam the level, and the
game experience provided by the level will emerge from this
setup. Building a constructive algorithm for emergent levels
is much harder, as simply adding a crate on top of another

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 2

one may block the visibility of a sniper patrolling nearby, and
create an opportunity for the player to move safely toward their
goal, changing the whole game experience. For this aspect of
the gameplay, it might be interesting to create a search-based
algorithm that simulates the game, rates the levels accordingly
and iterates towards the best solution. This gameplay will thus
allow us to test Genetic-WFC generation capabilities, and it is
generic enough to show how our algorithm may perform on
many games that share these design principles.

In this paper, we thus propose a search-based level gener-
ation pipeline that uses WFC as a repair operator to generate
semi-open FPS-like levels. We describe our solution and how
we combine a genetic algorithm with WFC. Then, we evaluate
WFC in terms of computation cost, as the main drawback from
this repair mechanism is the additional amount of computation.
We then compare our approach with a pure genetic algorithm
and a penalized genetic algorithm. Lastly, we will visually
explore the levels that Genetic-WFC can generate for different
values of complexity and safety.

II. RELATED WORKS

A. Wave Function Collapse
Wave Function Collapse (WFC), is a procedural generation

algorithm based on constraint propagation, initially introduced
in order to reproduce textures [8]. It has since been used
in different domains, including game level generation. The
game Bad North uses WFC to create 3D islands, and the
generator was then turned into a mixed-initiative generator
called Townscaper [3], [4]. Other games also implement single
[9], [10] or multi-layered WFC [11].

The WFC algorithm is based on a grid. Each cell of the grid
can contain a module [8]. A module is linked to a graphical
asset, and must respect adjacency constraints: it contains a list
of the other modules that can be placed next to it, for a given
rotation around the up axis. Initially, each cell may contain any
module, with equal probability. At each step, a random cell
among the cells with the smallest number of available modules
will randomly select one module, following the probability
distribution among available choices. These cells have the
lowest entropy, as they are the most constrained cells (see
Sec. III-E and Eq. 1). When this choice is made, the number
of possibilities available for the neighboring cells is reduced,
because some modules can’t be placed anymore, as they
would violate adjacency constraints. Removing these available
modules will again trigger updates for the neighboring cells,
until no more updates are required. Then a new random choice
is made.

WFC can be applied using two different approaches: the
Overlap Model and the Simple Tiled Model. The Overlap
Model uses an initial grid and divides it into overlapping
subregions, to drive generation with a list of allowed patterns.
The Simple Tile Model will only use a list of adjacency
constraints, either manually set or extracted from an example
grid. WFC can be either used in two or three dimensions. The
shape of the grid may also vary, as well as the number of
neighboring cells taken into account [12].

This algorithm seems promising to assist a search-based
algorithm for level generation. It has already been used to

generate playable levels by only propagating simple local
constraints, and may thus allow us to focus on evaluating
player experience for levels without basic asset placement
errors. This algorithm has already been extended to add
more complex level design constraints [13], and we follow
a similar approach by modifying the selection probabilities
of the modules. This way, we can use an iterative search
algorithm on top of WFC, as described hereafter.

B. Iterative Search

Game levels can be generated by computing multiple itera-
tions of the generation stage until a good enough solution,
according to a certain fitness function, is reached. A way
to perform this iterative search is to rely on an evolutionary
algorithm to optimize, step by step, a population of candidate
levels [14]. This approach has for instance already been
applied in a 2D platform game [15], as well as for the creation
of playable maps for a real-time strategy game [16].

Iterative search algorithms need to constantly evaluate the
levels they produce. This evaluation step can be performed
by a synthetic player. Several studies have focused on the use
of autonomous agents called personas, with different goals, in
order to evaluate and test the playability of dungeon levels, for
example [17], [18]. We follow the same approach in this work,
as we will drive the generation by evaluating a level from
a synthetic player’s point of view. Indeed, as we explained
before, the levels we want to generate provide an emergent
gameplay, and a single local change may modify the resulting
experience, by blocking a path, opening a shortcut or providing
a cover for instance. By simulating the gameplay, we should
be able to evaluate the emerging game experience, given our
current synthetic player’s persona.

However, it should be noted that the major disadvantage
of iterative search and synthetic player simulation is the
amount of computation necessary to explore and simulate the
game level space. As a result, gameplay simulation and level
generation must be kept as simple as possible to ensure that
the level-space exploration is achievable.

From a Genetic Algorithm point of view, the problem we are
trying to solve can be considered as a constrained optimization
problem. Our levels both require to provide and certain play
experience, as well as respect relative asset placement con-
straints. There exist multiple ways to perform a constrained
optimization with a GA [19]. First, one may penalize the
fitness function of the search algorithm every time a constraint
is violated. However, such a penalty might be hard to design.
Placing a stair in the middle of the road is a big mistake,
but if we penalize it too much, then we might lose the good
features of the rest of the level as it will be destroyed. In order
to avoid balancing one function between the simulation score
and constraints satisfaction, another possibility is to place
levels that do not respect constraints in a different population
and evolve them differently, only to correct the constraint-
related errors. FI-2Pop is such an algorithm. It maintains two
populations of individuals, the feasible and infeasible, and any
individual can move from one population to another, if it either
respects or not the constraints, and evolve to either maximize a

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 3

fitness function or the amount of broken constraints [19], [20].
Finally, another way is to use specific steps in the algorithm
to correct the errors of a given solution, that can be called
a repair operator. However, repair operators are often not
generic solutions, and need to be specifically designed for
each optimization problem, and can be costly in terms of
computation time when repairing individuals.

In this research, we are focused on game-level generation,
and WFC is generic enough to our domain to be used
as a repair operator. By only generating levels with WFC,
we should limit our search space to levels that respect our
simple constraints. As a first step, we thus need to describe
and evaluate Genetic-WFC, showing if indeed WFC can be
considered a valid candidate as a repair operator. However, in
further work, it would be very interesting to place ourselves in
the full spectrum of constrained genetic algorithm and explore
how our algorithm may compete with algorithms like FI-2Pop.

Given these previous works in procedural generation of
game levels, it seems that a mixed approach, that uses both
an iterative search and WFC might be promising. It will allow
us to avoid the evaluation of levels that do not respect simple
level design constraints and to focus our iterative search on
gameplay simulation and scoring. To be more specific, for
instance, WFC will enforce the simple rule that stairs can’t
be placed if they lead to nowhere or to a blocking wall. This
kind of error will not be evaluated by the synthetic player,
that will be focused on the global gaming experience, and
will not have as much semantic information about the asset as
we do. As far as the synthetic player is concerned, stairs are
just another navigable tile, and climbing a set of stairs to then
just jump into the air is a way to explore the level. WFC may
allow us to enforce a correct level structure, extracted from
example levels, to prevent this kind of obvious design error.
However, such an approach needs to be evaluated in terms of
computation cost as well as its capability to generate a varied
set of interesting levels, which is what the reminder of this
paper is focused on.

III. GENETIC-WFC

A. Algorithm Overview

Genetic-WFC is a generation pipeline based on a genetic
algorithm, that uses WFC to only generate candidate levels
that respect specific asset placement constraints, as well as to
transform a greyblock level into a final one. Figure 1 describes
this pipeline, and we detail it hereafter.

As can be seen at the top of Figure 1, our genetic algorithm
drives the WFC to generate multiple levels, using boost zones
to influence asset selection probability, as described in section
III-E. This WFC extracts the constraints by only validating the
relative asset placement present in example grids. Also, as we
explain in section III-D, we only manipulate greyblock assets
at this stage of our pipeline. WFC computing time grows with
the number of modules, and many graphical assets have the
same level design function. So we first generate the level using
a restricted number of modules, our greyblocks.

Then, the resulting greyblock grid is annotated with navi-
gability and visibility information, later used by the synthetic

player, detailed in section III-F, during the simulation step. Our
agent will rate the level, depending on its current persona, i.e.
the current weightings for the novelty, safety and complexity
ratings.

These previous steps are performed iteratively on a popula-
tion of candidate levels, as long as we do not meet a specific
termination criteria. For our experiment, we simply perform a
fixed number of loops.

Then, the greyblock levels with the best fitness is kept,
and is processed by another WFC. Each greyblock level
corresponds to a category of assets, e.g. stairs or fences. As
explained in section III-D we use these categories and the
constraints relative to the graphical assets to generate the
final level, a level with graphical assets corresponding to the
greyblock level. This step can be run multiple times to generate
levels with the same navigation and visibility properties, but
with different graphical assets.

Figure 1: Evolutionary WFC Algorithm

B. Wave Function Collapse

We have implemented the Simple Tiled Model, as it is the
simplest and fastest algorithm. The Overlap Model is very
powerful as it reproduces patterns from the example, but we
want to limit the constraints applied at the generation stage,
and we need to save as much computation time as possible.
Indeed, WFC will have to generate many new levels at each
step of our evolutionary algorithm, which can really increase
computation time. Our constraints are automatically extracted
from example game levels created using WFC modules manu-
ally arranged on a 2D grid (Fig. 2 or Fig. 4a). We only take into
account four neighbors: left, right, top and bottom, and each
module can be placed with four 90 degrees rotations around
the up axis. It should also be noted that we take into account
the frequency of assets in the example grid when we randomly
choose a module in a cell. The more an asset has been placed

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 4

in the example grid, the higher the chances are that it will be
selected. We can then run the WFC algorithm on a grid of any
size to generate a level that respects the extracted adjacency
constraints.

Figure 2: WFC Sample Grid, with air and border tiles.

C. Air Filling and Borders

In order to extract adjacency constraints from a manually
designed level, we use two special modules that are placed
automatically (Fig. 2 or Fig. 4a). First, we spawn an air
module in every empty cell of the grid to explicitly create a
link between void cells and modules. It is to note that we might
also use different types of air modules to create constraints
between modules that are not next to each other. We also use
this trick for the border of the map, where we put a border
asset. The edge of the map has a specific meaning, we may
want to place a wall or allow circulation around the map for
instance.

D. Greyblocking

As the number of assets grows, so does WFC computing
time. However, many graphical assets will have the same
gameplay function in the level. We thus decided to generate
levels in two steps, and to rely on greyblocking, as depicted
in Figure 1. We thus use a small number of modules that
represent each asset categories, for instance in our examples,
as shown in Figure 3: low blocking walkable volume (d),
high blocking walkable volume (f), transition from floor to
low walkable (c) and from low to high walkable (d). This
allows us to save computation time during the iterative search,
and also to mimic a working method of prototyping used by
level designers: designing a level and making it a beautiful
environment can be considered two separate steps. We thus
add a specific step when we initialize the second-pass WFC
grid: we simply remove, for each cell, all the choices that are
not in the same category as the greyblock asset already in this
cell (Fig. 4). This way, we can use the result of our greyblock
Genetic-WFC to constrain another WFC that generates the
final map.

E. Genetic algorithm for WFC

The next part of our generation system is the genetic
algorithm that will drive the generation toward a specific
gaming experience. In order to allow this iterative research,

(a)
Player
Spawn

(b) Air (c)
Stairs
to
level
one

(d)
Level
one
block

(e)
Stairs
to
level
two

(f)
Level
two
block

(g)
Border

Figure 3: Modules used for greyblocking

(a) Greyblocks sample grid

(b) GA + WFC to generate structure

(c) Second WFC pass to replace
greyblocks with visual assets.

Figure 4: Levels are first optimized using greyblocks to reduce
complexity. Then a second WFC replaces greyblocks with
visual assets.

we need to introduce a way to control the WFC and encode
it into a chromosome. To do so, we influence the selection
probability of a module, every time a random choice is made
by the WFC.

When the whole WFC grid is updated, the selection proba-
bility of each module in each cell is computed with regard to
asset frequencies and adjacency constraints, and WFC selects

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 5

the most constrained cell by computing each cell’s entropy. For
each cell that has N > 1 possible modules, with each module
having a probability pi to be selected, we compute entropy
using equation 1. Cells where modules are equiprobable will
have the highest entropy, zero. As we just need to select the
lowest entropy, we do not use the original log from Shannon’s
entropy to save computing time.

H = −
N∑
i=1

∣∣∣∣ 1N − pi

∣∣∣∣ (1)

a) Chromosomes Representation: In order to allow the
optimization algorithm to drive the WFC, we added boost
zones that increase the selection probability of a module in a
specific region of the grid. This way, we can locally influence
the asset selected by the WFC without breaking the algorithm.
We only multiply the module’s selection probability by a
certain value for all the cells inside the boost zone. We thus
can’t force an asset that would violate a constraint, as its
probability has already been set to zero by previous constraint
propagation.

Chromosomes of our genetic algorithm thus need to encode
the boost zones. In our first attempt to use boost zones,
we defined a small amount of boost zones with variable
sizes, variable positions, and variable probability boost factors.
However, we didn’t get interesting results, so we quickly
switched to a more directive option with a more observable
impact on the generated level. We use one boost zone per grid
cell, with a fixed and very high boosting factor. As we have
one boost zone per cell, we do not need to encode their size
or coordinates. Our chromosome has thus the same size as the
WFC grid, and only encodes the ID number of the module
to boost for each cell of the grid. As a result, the genetic
algorithm will choose a module for each cell of the grid, but
the WFC will then translate these choices into a level that
respects the adjacency constraints.

b) Chromosomes Re-encoding: To enforce a determin-
istic mapping of genotype to phenotype, we use the same
random generator seed every time we generate a level. How-
ever, to have an efficient crossover operator, we also need
to re-encode our level into its chromosome after evaluation
(Algorithm 1, l.20). Indeed, our chromosomes allow us to
boost the probability of a specific asset to be selected. If
this asset can’t be placed because it breaks adjacency rules,
another one will be randomly chosen by the WFC. As we
always use the same random generator’s seed to generate
a level, the same asset will always be chosen for a given
cell of a given chromosome. However, this will not be the
case after a crossover. WFC selects a tile with regard to
the number of previously selected modules, to match the
frequency of each asset in the sample grids. If an asset is
not very frequent in the sample grids, and it has already been
placed in the map, its selection chances will fall. Thus, when
performing a crossover and mixing level together, modules
wrongly placed by the chromosomes and thus chosen by the
WFC alone may be different, as asset frequencies before the
choice will be different in this new map. In order to prevent
this loss of determinism, we simply re-encode the phenotype

into the genotype when we evaluate a level. For each cell,
we change the chromosome to put the ID number of the asset
that has been placed in the map, as if it was the chromosome’s
choice in the first place. We show in section V and Figure 6
that without this re-encoding, optimizing WFC’s generation is
much slower, see curve Genetic-WFC NR for No Re-encoding.

c) Selection, Mutation and Crossover: We use the Ge-
neticSharp library to implement our genetic algorithm [21].
The first population is initialized with random chromosomes.
Parents are selected by tournament (Alg. 1, line 2). Pairs of
parents are formed sequentially (Alg. 1, line 5-11), and with
probability pcross, we either use the first parent as sibling or
combine them with crossover (Alg. 1, lines 12-16). We use
a custom one point crossover operator that randomly chooses
with equal probability to separate the grid horizontally or ver-
tically, as in [22]. We then apply a uniform mutation operator
that can randomly mutate any gene of the chromosome with
probability pmut (Alg. 1, line 17). Finally, the reinsertion
is elitist: during the previous steps, we generated Popmin

individuals, and we add the Popmax − Popmin best parents
from the last iteration Pn to the new population Pn+1 (Alg.
1, line 24).

1 while NbMax epoch not reached do
2 Pn ← Tournament selection of Popmin p ∈ P ;
3 Pn+1 ← ∅;
4 forall i ∈ [1, size(Pn)] do
5 if i is even then
6 j ← i− 1;
7 else
8 j ← i+ 1;
9 end

10 if j ∈ [1, size(Pn)] then
11 Take pi, pj in Pn;
12 if rnd ∈ U(0, 1) < pcross then
13 c ← cross(pi,pj);
14 else
15 c ← pi;
16 end
17 c ← mutate(c, pmut);
18 l ← generate(c);
19 evaluate(l);
20 c ← reencode(l);
21 Add c to Pn+1;
22 end
23 end
24 Add (Popmax - Popmin) bests of P to Pn+1;
25 P ← Pn+1;
26 end

Algorithm 1: Genetic Algorithm

F. Level Evaluation with a Synthetic Player

To drive the genetic algorithm, we need to compute a fitness
score for each generated level, depending on the gaming
experience we try to provide. To do so, we use a very
simple synthetic player that navigates in the level and rates it

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 6

according to its preferences. For the results presented in this
paper, our synthetic player performs 1125 evaluation steps to
rate a 15×15 tiles level. At each step, the agent is driven by
a novelty rating, i.e., it goes to the next adjacent cell that has
been visited the longest time ago. The novelty value of each
cell is computed as described in equation 2: tn is the current
time step when the synthetic player evaluates the cell, tl is
the time step of the last time the synthetic player visited this
cell. tl initial value is −∞. Thus, a cell is considered a totally
new for the agent if it visited it more than 200 steps ago. Our
agent only walks in straight lines and can’t jump, and evaluates
directions in a fixed order, thus score ties always lead to the
same path.

N = min

(
tn − tl
200

, 1

)
(2)

To evaluate the gaming experience, we also use a safety
score. When playing a shooter, the level geometry provides a
way to hide from other players and their shots. The players
can’t see and react to what is happening all around them. They
can thus use the geometry to their advantage to be safe on
one side and shoot players from the other, for instance. Also,
we think that an important aspect of the feeling provided by a
level might be linked to the sight distance it provides, allowing
players to shoot and to see the level from a long distance
or quickly react to a player suddenly appearing in front of
them in more cluttered levels. We thus compute a safety score,
described in equation 3. Vx+,Vx−,Vz+ and Vz− are the square
root of the number of cells that the agent can see through
in each direction, our agent moving on the xz-plane, W is
the width of our level in cells, 15 in our examples. Visibility
from a cell is precomputed during the level’s generation, using
cells’ border heights and the height of the agent’s line of sight,
see Figure 1. We use the square root to take into account the
fact that, from a perception point of view, cells close to the
agent are more important than those far from it. It is to note
that when running Genetic-WFC, we thus do not explicitly
simulate enemy agents, but use this safety score to evaluate
how geometry might provide cover against them.

S =

(
Vx+ + Vx− + Vz+ + Vz−

W ∗ 4
+ 1

)−1

(3)

Then, we also use a complexity score. The idea is to evaluate
how simple the level may look from a given point of view. For
instance, this is very useful when generating an unsafe level.
The most unsafe level, given our safety function, is a totally
empty level. It is actually unsafe, but we need to express the
fact that there is nothing interesting to be seen. And the same
goes if the level is only filled with level one blocks, or is just
a long simple corridor.

We pre-compute the complexity score as follows: when
computing visibility, we use a ray that travels from the agent
and goes through as many visible cells as possible. To compute
complexity, we use three rays (Fig. 5). The first one is exactly
the same as the visibility ray. The two others have the same
length, but are one cell farther, on each side of the first
one. Then, we follow these rays cell by cell, and compute

Figure 5: We compute complexity following the visibility ray,
and two rays of the same length on each side of it.

complexity by testing if the module’s ID of the current cell is
different from the module’s ID in the previous cell. If it is, it
means that the players see something different, and thus, we
add one to the perceived complexity in this direction. The sum
is then divided by three, as we use three rays. We then compute
the complexity score described in equation 4. Cx+,Cx−,Cz+

and Cz− are the square root of the complexity computed along
each direction from the current cell, y is our up axis, W is
the width of our level in cells.

C =
Cx+ + Cx− + Cz+ + Cz−

W ∗ 4
(4)

While the synthetic player’s navigation is only based on
novelty and adjacent cells’ reachability, we use a weighted
average of novelty, safety and complexity to evaluate the
synthetic player’s experience and thus calculate the fitness of
each level. In our experiments, our synthetic player takes 1125
steps into the level to evaluate it, i.e. five times the number of
cells in the level. The level’s fitness is the average fitness for
all steps.

IV. WFC COMPUTATION COST

In order to evaluate the impact of WFC on a search
based procedural level generator, we show the growth of
computing time with grid size and number of modules, using
our implementation of the simple tiled WFC. Our WFC is
written in C# and runs in Unity game engine [23]. These tests
were performed on an i7-9700k processor. Table I represents
some benchmarks for the WFC computation time based on
the number of modules, including air modules, and the size
of the output grid. These values are an average of 100 WFC
generations. We tested sizes from 15 blocks (30 meters) to 30
blocks (60 meters) and used from 2 greyblocks plus the air
tile to 18 different modules. We can see that generation time
grows quickly with the number of modules and grid size, and
can go up to more than 300ms for a 30×30 tiles grid, with 18
different modules.

Grid
Size

Number of modules

3 6 12 18

15×15 6 11 21 29
20×20 15 30 54 79
25×25 36 71 125 171
30×30 77 142 250 334

Table I: WFC Average Computation Time (ms)

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 7

It is to note that the number of relationships between the
modules has an impact on computation time. Indeed, it can be
very costly to propagate the constraints on the whole grid. If
any modules can be placed next to any other, no constraints
have to be propagated when we select an asset. On the other
hand, if asset placement is very constrained, each choice will
have to be propagated to the adjacent cells and generation
should be slower. But also, the more we constrain our modules,
the faster the number of possibilities will decrease and the
faster the grid will be generated. The values of table I can
thus vary with respect to the constraints between the modules.

Also, we can point out that to generate much bigger maps
than those targeted in this paper, running a WFC on the whole
map may not be efficient enough. Generation cost may be
reduced by opting for a hierarchical approach. WFC allows
taking into account constraints at the edge of the map, making
it easy to generate a map that connects to another one. One
may then generate a much bigger level as a collection of
connected smaller maps. However, player experience will only
be evaluated subregion by subregion. But in this example,
generating with WFC four connected 15×15 maps with 18
modules should take around 120ms instead of more than
300ms for the whole 30×30 map.

In the next experiments presented in this paper, we will
target 15×15 blocks levels, with 7 different modules. Level
generation will be close to 10ms, which is fast enough to
allow us to perform an iterative search, and provides enough
variety to create different paths and spaces in the level.

V. GENETIC-WFC EVALUATION

We evaluate Genetic-WFC by comparing it to the ap-
proaches it should improve. Thus, we first compare Genetic-
WFC with a pure genetic algorithm approach, that we will call
GA Only. GA Only corresponds to a more standard, search
based approach. We thus turn WFC off, and each gene of
the chromosome is directly translated into an asset in the
grid. We still use our synthetic player to drive the generation
and thus generate levels using novelty, safety and complexity
metrics. We ran both Genetic-WFC and GA Only for 6k
epochs, population size were Popmin = 50 and Popmax =
60. Mutation probability was set to pmut = 0.04, and crossover
probability to pcross = 0.75.

We also compare Genetic-WFC with a genetic algorithm
that uses a penalized fitness function, in order to correct some
asset placement errors. As we said earlier, we want our fitness
function to focus on gameplay experience, but one may argue
that the fitness can be calculated in two steps, one focused
on experience and the other on simple level structural errors.
It is however still not the same to correct these errors with
optimization as it is to have an algorithm that correct these
errors for us. It’s either time spent in WFC or in epochs.
We thus created the GA Only Penalized algorithm, where we
remove 0.01 to the level’s score for every misplaced stair and
misplaced border tile, and a huge -10K penalty when there
exists more or less than exactly one spawn point.

Then, we compare Genetic-WFC with a brute force search
algorithm that only uses WFC to create the levels, just keeping

the best level it can find, without genetic operators, that we call
WFC Only. WFC is a procedural level generation on its own
that can give very interesting results by itself, even when not
driven by an optimization process. To understand how useful
the genetic optimization really is and the fitness gain that it
provides, we tried to generate levels using WFC only, rating
levels with our synthetic player and selecting the best of them.
As our GA population size is 50, and we run 6K epoch, we
chose to randomly compute 6K * 50 = 300K WFC and keep
only the best one.

Lastly, we wanted to illustrate how beneficial was the
gene re-encoding to the optimization process, as explained in
section III-E. Thus, we also ran our Genetic-WFC without the
gene re-encoding.

For all these experiments, we used the same synthetic
player, and its fitness function was set to F = 1 ∗ N + 1 ∗
S − 1 ∗ C. We thus want to maximize novelt and safety, and
to minimize complexity. Also, as a map is considered valid
only if it contains one and only one player spawn, we put the
fitness of any map with more or less than one spawn to −∞.

Figure 6: Average of maximum fitness evolution for 10 runs
of each method, 6K epochs. Dashed lines show first and third
quartiles. NR for No Re-encode. F = N + S − C. GA
Only Penalized’s fitness is reported without penalty, allowing
comparison between algorithms.

Total Novelty Safety Complexity
Gen. WFC 1.45(0.006) 0.58(0.008) 0.91(0.002) 0.04(0.003)

Gen. WFC NR 1,36(0.014) 0,49(0,014) 0,92(0,003) 0,05(0,003)
GA Only 1,44(0,007) 0,56(0,006) 0,92(0,002) 0,04(0,003)

GA Only Pen. 1,36(0,014) 0,49(0,016) 0,91(0,003) 0,05(0,005)
WFC Only 1,32(0,004) 0,45(0,005) 0,92(0,002) 0,05(0,003)

Table II: Mean (sd) of scores reached after 10 runs of each
method, 6K epochs, rounded to the second decimal for mean
and to the third decimal for sd. NR for No Re-encode. F =
N + S − C. GA Only Penalized’s fitness is reported without
penalty, allowing comparison between algorithms.

First, we can look at the fitness curve of each method, plot-
ted in Figure 6. WFC Only’s curve shows us that the genetic
algorithm is actually helping WFC to reach better results. In
the very first few runs, a max fitness is reached, and the fitness

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 8

is almost stable for the next runs, while both Genetic-WFC
and GA Only keep progressing. We thus managed to drive
the WFC algorithm with a genetic algorithm to reach better
results. Also, we can see that the gene re-encoding clearly
helps the optimization process, as optimization is much slower
when it’s turned off.

Looking at Genetic-WFC and GA Only, we can see that
Genetic-WFC quickly reaches a better fitness during the first
epochs. This should mainly be due to the fact that WFC allows
Genetic-WFC to directly sample from better levels than GA
Only does. Indeed, for instance, WFC forces stairs to be placed
against the walls in a navigable manner, while GA has to
discover the correct placement for each set of stairs.

GA Only Penalized should be able to generate much better-
looking levels, as we will see hereafter, but for the same
number of epochs, the fitness reached is lower. The fitness
reported for GA Only Penalized is not the full fitness used by
the algorithm, but only the synthetic player perception part of
it, in order to be able to compare the values.

It is also to note that we compare algorithms for a fixed
number of 6K epochs. Genetic-WFC spends around 9.5 min-
utes for 6k epoch in our setting, while GA Only and GA
Penalized need only around 2.5 minutes, which is almost 4
times faster. We thus ran GA Only Penalized for 10 runs of
22K epochs to reach the same computation time. The best
score for ten runs was 1.42, which is better than 1.38 but still
lower than the 1.457 we achieved with 6k epochs of Genetic-
WFC.

Table II allows us to have a better understanding of the
performance of each method: we give the value of each
parameter of the fitness function for the best maps created
in 6K epochs and presented hereafter. We can see that the
GA Only slightly outperformed Genetic-WFC for Safety and
Complexity, we suppose mainly by staying low and using
many stairs. However, this strategy has a limit as the player
needs to go back after going on any unconnected stairs tile,
therefore penalizing the novelty score.

Figure 7: Best levels for 10 runs of 6k epochs, maximizing
novelty and safety with the lowest complexity. On the left:
GA Only. On the right: GA Only Penalized.

If we look at the best-rated maps, we can better understand
the relative performance of each method. Fig. 7 shows the GA
Only’s best results. We can see that GA Only placed a lot of
stairs. Stairs are very useful to both optimize for novelty and
complexity: stairs are navigable and can thus provide positive
feedback for novelty, but they also block visibility and can
help to maximize safety. We can also note that GA Only used

border modules inside the map, as nothing prevented it to do
so. However, even if this map has a correct fitness, the map is
clearly not the kind of level we want to generate. It is not the
case for GA Only Penalized, which has a much better look.
We still have some asset placement errors, as we only penalize
them and do not correct them.

Figure 8: WFC Only’s best of 10 runs of 6k epochs, maxi-
mizing novelty and safety with the lowest complexity.

As we can see in Figure 8, WFC Only gave a better-looking
result than GA Only. However, the map’s fitness is much lower
than for the GA Only and Genetic-WFC best results. If we
look more precisely at the scores given in table II, we can
see that WFC only was really penalized by novelty. Indeed,
our rules allow creating locally navigable portions of levels,
as stairs are connected correctly for instance, but making a
level that is globally navigable is much harder. Of course, we
might change the modules’ placement rules to disallow any
connection that breaks navigability, by for instance forcing
any level one tile to be connected to another level one tile or
to a set of stairs for instance. But then, it would then be much
harder for the generator to constrain the player’s path in order
to provide a specific experience.

Figure 9: Genetic-WFC’s best of 10 runs of 6k epochs,
maximizing novelty and safety with the lowest complexity.

Finally, if we look at Figure 9, we can see that Genetic-
WFC did, in our opinion, create the best-looking map with
regard to the constraints. The novelty score is the highest, and
there do not exist any level one or floor tile that can’t be
attained. Few level 2 tiles are reachable, but they are close to
the border wall, limiting the impact on safety and complexity.
Other level 2 blocks are scattered around the level, blocking
sight and thus providing safety and limiting complexity.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 9

C = -1 C = -0.5 C = 0.5 C = 1

S
=
-1

S
= -
0.5

S
=

0.5

S
= 1

Figure 10: Generated Levels with varied safety and complexity, and novelty weighted 0.5

VI. EXPLORING GAME LEVELS’ SPACE

In order to evaluate the variety of experiences that can be
provided by our generator, we decided to sample the level
space and use Genetic-WFC to create maps with different
values of novelty, safety and complexity. We cannot depict
here all the results that can be obtained, so we limit ourselves
to the following. Novelty is a parameter that we chose to keep
at a fixed weight of 0.5 for all the runs. Indeed, optimizing
for low navigability can be done, but as we cannot explore
all dimensions here, we chose exploring for varied levels of
complexity and safety while maintaining navigability was an
interesting setup. We used four possible weights for complex-
ity and safety: high (1.0), medium high (0.5), medium low
(-0.5) and low (-1.0). We ran Genetic-WFC for all parameters
combinations for 5k epochs, with population size Popmin =
50 and Popmax = 60. Mutation probability was set to pmut =
0.04, and crossover probability to pcross = 0.75. We show the
results in Figure 10.

Looking at Figure 10, we can observe that both complexity
and safety do have an impact on the generated maps’ layout.
For instance, in the first row, we try to generate maps with a

very low safety scores. Such maps can be very empty, like the
top left one, as the player can easily navigate an empty map,
and is unable to hide if there is nothing but air. However, as we
go to the right, from low to high complexity, the generator adds
more and more modules, creating both unsafe and cluttered
maps. To do so, we can see for instance that all the level 2
modules are navigable, providing positions with low safety
and high complexity.

Then, if we look at the first column in Figure 10, we see
that starting from the top left, a relatively empty unsafe and
non-complex map, then if we look farther down Figure 10,
safety is increased while keeping the complexity low. Many
of the level 1 tiles are navigable, but the generator adds level
2 tiles that are not, providing cover while maintaining safety.

The right column of Figure 10 is harder to interpret. As we
go down, we ask for something rather contradictory: we want
safety to increase but also want to maintain a high level of
complexity. A map that maximizes complexity and safety both
allows the player to see far away to see complex structures
and limits visibility to keep a high level of safety. The only
difference between the top and bottom maps we might spot is

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



TRANSACTIONS ON GAMES 10

that the bottom level one blocks seem to be placed in a more
narrow way than in the top map. Indeed, in the bottom, for the
safest map, level one blocks only provide paths of one block
width, i.e., we can’t see level one blocks that create a platform
of two tiles by two tiles or more. On the other hand, at the
top, for the most unsafe map, this is not the case, and we see
larger level one platforms. Avoiding platforms might be a way
for the generator to gather fitness with safety on these narrow
paths, as most of them are also close to geometry. Thus, the
bottom right map is very interesting as it seems very varied,
with unsafe and complex positions at the top of level two tiles
but also safe paths on level one tiles and floor tiles.

VII. CONCLUSION AND FUTURE WORKS

We presented Genetic-WFC, a procedural level generation
algorithm that combines a genetic algorithm with the Wave
Function Collapse algorithm as a repair operator, to generate
levels targeting specific play experiences. WFC allows us to
only manipulate levels that respect basic placement constraints
and to focus our fitness function and simulation steps on
gaming experience. We control WFC by locally biasing asset
selection probabilities. We use a specific 2D crossover operator
to split the map vertically or horizontally. We also re-encode
genes by using the actual modules chosen by WFC in the
generated level, in order to maximize crossover efficiency.
We propose a Greyblocking step to limit the combinatorial
explosion of WFC.

We show that we outperform a pure genetic search and a
brute force search with WFC only, in terms of level fitness.
Having better results than a brute force search shows that the
genetic algorithm actually controls WFC. For this gameplay
and this setting, Genetic-WFC seems to be the best algorithm.
With the same number of steps it reaches the highest fitness
level, and with the same amount of time our algorithm is just
slightly better than Penalized WFC. However, our implementa-
tion of WFC currently runs in C# and might still be optimized
in order to run faster, which is not the case for the penalized
approach.

We used a synthetic player with very simple metrics of
novelty, safety and complexity. We showed that from a bird’s-
eye point of view, maps generated by sampling various weights
of safety and complexity seemed to have different features that
match the game experience targeted by each set of metrics
weights. This confirms that a simple simulation of the map can
give interesting results, that our metrics seem to propose useful
dimensions, and that Genetic-WFC may be able to provide
various play experiences.

We may be tempted to calculate the levels’ fitness without
simulation, by averaging the safety and complexity scores for
all cells. However, the gameplay we target is emergent, and
the player will not spend the same amount of time in every
part of the level. We need to take into account available paths,
evaluate where the player will be the most, the direction they
are facing, which is getting close to actually simulating the
player’s journey. Moreover, we do not currently take actual
enemies into account, but the simulation approach makes it
much more straightforward to do than to statically evaluate the

possible impact of enemies patrols on the resulting gameplay
using heuristics.

The next step of this research is to perform a user evaluation
of our generated levels. To do so, we need to explicitly
simulate the enemies, and thus provide human players with
a more specific context. Then, our synthetic player might also
be improved by using a cone of perception instead of a straight
line, and allowing it to fight with enemies, for instance. Also,
we may further investigate the advantage of our method by
comparing it to constraint based optimization methods like
FI-2Pop, and see how they perform on generating levels for
our test-bed gameplay.

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games: A Textbook and an Overview of Current Research. Springer,
2016, website: http://pcgbook.com/. Last visited 30 Jun. 2021.

[2] M. Kleineberg, “Infinite city,” https://marian42.de/article/wfc/, 2019,
accédé le 25/10/2019.

[3] PlausibleConcept, “Bad north,” 2018.
[4] O. Stålberg, “Townscaper,” 2020.
[5] Ubisoft, “Ghost recon: Wildlands,” 2017.
[6] ——, “Far cry 4,” 2014.
[7] F. Software, “Elden ring,” Bandai Namco Entertainment, 2022.
[8] M. Gumin, “Wave function collapse,” URL: https://github.com/mxgmn/

WaveFunctionCollapse, 2016, last visited 3 Oct. 2019.
[9] R. Devaux, “Week 60: Lots of things,” URL: https://trasevol.dog/2017/

06/19/week60/, 2017, last visited 16 Jan. 2020.
[10] A. Wallace, “Maureen’s chaotic dungeon,” URL: https://globalgamejam.

org/2019/games/maureens-chaotic-dungeon, 2019, last visited 25 Oct.
2019.

[11] FreeholdGames, “Caves of qud,” 2015.
[12] T. Nordvig Møller, J. Billeskov, and G. Palamas, “Expanding wave

function collapse with growing grids for procedural map generation,” in
International Conference on the Foundations of Digital Games, 2020,
pp. 1–4.

[13] A. Sandhu, Z. Chen, and J. McCoy, “Enhancing wave function collapse
with design-level constraints,” in Proceedings of the 14th International
Conference on the Foundations of Digital Games, 2019, pp. 1–9.

[14] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne, “Search-
based procedural content generation: A taxonomy and survey,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 3, pp. 172–186, 2011.

[15] S. Dahlskog and J. Togelius, “Procedural content generation using
patterns as objectives,” in European Conference on the Applications of
Evolutionary Computation. Springer, 2014, pp. 325–336.

[16] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelbäck, and
G. N. Yannakakis, “Multiobjective exploration of the starcraft map
space,” in Proceedings of the 2010 IEEE Conference on Computational
Intelligence and Games. IEEE, 2010, pp. 265–272.

[17] A. Liapis, C. Holmgård, G. N. Yannakakis, and J. Togelius, “Procedural
personas as critics for dungeon generation,” in European Conference
on the Applications of Evolutionary Computation. Springer, 2015, pp.
331–343.

[18] C. Holmgard, M. C. Green, A. Liapis, and J. Togelius, “Automated
playtesting with procedural personas with evolved heuristics,” IEEE
Transactions on Games, 2018.

[19] A. Liapis, G. N. Yannakakis, and J. Togelius, “Constrained novelty
search: A study on game content generation,” Evolutionary computation,
vol. 23, no. 1, pp. 101–129, 2015.

[20] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible–
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal
of Operational Research, vol. 190, no. 2, pp. 310–327, 2008.

[21] D. Giacomelli, “Geneticsharp,” URL: https://github.com/giacomelli/
GeneticSharp, 2013, last visited 2 Jul. 2021.

[22] M.-W. Tsai, T.-P. Hong, and W.-T. Lin, “A two-dimensional genetic algo-
rithm and its application to aircraft scheduling problem,” mathematical
Problems in Engineering, vol. 2015, 2015.

[23] Unity, “Fps microgame,” URL: https://learn.unity.com/project/
fps-template, last visited 25 Mar. 2021.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TG.2022.3192930

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

http://pcgbook.com/
https://marian42.de/article/wfc/
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse
https://trasevol.dog/2017/06/19/week60/
https://trasevol.dog/2017/06/19/week60/
https://globalgamejam.org/2019/games/maureens-chaotic-dungeon
https://globalgamejam.org/2019/games/maureens-chaotic-dungeon
https://github.com/giacomelli/GeneticSharp
https://github.com/giacomelli/GeneticSharp
https://learn.unity.com/project/fps-template
https://learn.unity.com/project/fps-template

	Introduction
	Related Works
	Wave Function Collapse
	Iterative Search

	Genetic-WFC
	Algorithm Overview
	Wave Function Collapse
	Air Filling and Borders
	Greyblocking
	Genetic algorithm for WFC
	Level Evaluation with a Synthetic Player

	WFC Computation Cost
	Genetic-WFC Evaluation
	Exploring Game Levels' Space
	Conclusion and Future Works
	References

